Add like
Add dislike
Add to saved papers

Identifying Phosphodiesterase-5 Inhibitors with Drug Repurposing Approach: Implications in Vasodysfunctional Disorders.

ChemistryOpen 2023 December 8
Phosphodiesterase type 5 (PDE5) is a multidomain protein that plays a crucial role in regulating cellular cyclic guanosine monophosphate (cGMP), a key signaling molecule involved in various physiological processes. Dysregulation of PDE5 and cGMP signaling is associated with a range of vasodysfunctional disorders, necessitating the development of effective therapeutic interventions. This study adopts comprehensive approach, combining virtual screening and molecular dynamics (MD) simulations, to repurpose FDA-approved drugs as potential PDE5 inhibitors. The initial focus involves selecting compounds based on their binding affinity. Shortlisted compounds undergo a meticulous analysis for their drug profiling and biological significance, followed by the activity evaluation and interaction analysis. Notably, based on binding potential and drug profiling, two molecules, Dutasteride and Spironolactone, demonstrate strong potential as PDE5 inhibitors. Furthermore, all atom MD simulations were employed (500 ns) to explore dynamic behavior of Dutasteride and Spironolactone in complexes with PDE5. Principal components analysis (PCA) and free energy landscape (FEL) analyses are further leveraged to decipher that the binding of Dutasteride and Spironolactone stabilizes the structure of PDE5 with minimal conformational changes. In summary, Dutasteride and Spironolactone exhibit remarkable affinity for PDE5 and possess characteristics that suggest their potential as therapeutic agents for conditions associated with PDE5 dysfunction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app