Add like
Add dislike
Add to saved papers

Cardiac damage following renal ischemia reperfusion injury increased with excessive consumption of high fat diet but enhanced the cardiac resistance to reperfusion stress in rat.

Heliyon 2023 November
Renal ischemia-reperfusion (IR) injury inflicts remote cardiac dysfunction. Studies on rats fed with a high-fat diet (HD) showed contradictory results: some demonstrated increased sensitivity of the heart and kidney to IR injury, while others reported resistance. In this study, we examined cardiac dysfunction and compromised cardiac tolerance associated with renal IR in HD and standard diet (SD) fed rats. Male Wistar rats fed with HD or SD diet for 16 weeks were subjected to either renal sham or IR protocol (bilateral clamping for 45 min and reperfusion for 24 h). The hearts isolated from these rats were further subjected to normal perfusion or IR procedure to study cardiac response. Renal IR surgery negatively affected cardiac function with substantial changes in the cardiac tissues, like mitochondrial dysfunction, elevated oxidative stress, and inflammation. HD-fed rat hearts exhibited hypertrophy at the end of 16 weeks, and the consequential impact on the heart was higher in the animals underwent renal IR surgery than with sham surgery. However, the IR induction in the isolated heart from renal sham or renal IR operation showed significant tissue injury resistance and better physiological recovery in HD-fed rats. However, in SD-fed rats, only hearts from renal IR-operated rats showed resistance to cardiac IR, whereas hearts from renal sham-operated rats were more susceptible to IR damage. The augmented IR resistance in the heart with prior renal surgery was due to preserved mitochondrial bioenergetics function, reduced oxidative stress, and activation of the PI3K/AKT signaling axis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app