Add like
Add dislike
Add to saved papers

MicroRNA-192-5p downregulates Fat Mass and Obesity-associated Protein to aggravate renal ischemia/reperfusion injury.

Acute kidney injury (AKI) is a common disorder without effective therapy yet. Renal ischemia/reperfusion (I/R) injury is a common cause of AKI. MicroRNA miR-192-5p has been previously reported to be upregulated in AKI models. However, its functional role in renal I/R injury is not fully understood. This study aimed to investigate the effects and the underlying mechanism of miR-192-5p in renal I/R progression. Hypoxia/reoxygenation (H/R)-induced cell injury model in HK-2 cells and I/R-induced renal injury model in mice were established in this study. Cell counting kit-8 assay was performed to determine cell viability. Quantitative real-time PCR and western blot analysis were performed to detect gene expressions. Hematoxylin-eosin and periodic acid-Schiff staining were performed to observe the histopathological changes. Enzyme-linked immunosorbent assay was performed to detect the kidney markers' expression. In vivo and in vitro results showed that miR-192-5p was up-regulated in the I/R-induced mice model and H/R-induced cell model, and miR-192-5p overexpression exacerbated I/R-induced renal damage. Then, the downstream target of miR-192-5p was analyzed by combining the differentially expressed mRNAs and the predicted genes and confirmed using a dual-luciferase reporter assay. It was found that miR-192-5p was found to regulate fat mass and obesity-associated (FTO) protein expression by directly targeting the 3' untranslated region of FTO mRNA. Moreover, in vivo and in vitro studies unveiled that FTO overexpression alleviated renal I/R injury and promoted HK-2 cell viability via stimulating autophagy flux. In conclusion, miR-192-5p aggravated I/R-induced renal injury by blocking autophagy flux via down-regulating FTO.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app