Add like
Add dislike
Add to saved papers

A deep learning model predicts the presence of diverse cancer types using circulating tumor cells.

Scientific Reports 2023 November 31
Circulating tumor cells (CTCs) are cancer cells that detach from the primary tumor and intravasate into the bloodstream. Thus, non-invasive liquid biopsies are being used to analyze CTC-expressed genes to identify potential cancer biomarkers. In this regard, several studies have used gene expression changes in blood to predict the presence of CTC and, consequently, cancer. However, the CTC mRNA data has not been used to develop a generic approach that indicates the presence of multiple cancer types. In this study, we developed such a generic approach. Briefly, we designed two computational workflows, one using the raw mRNA data and deep learning (DL) and the other exploiting five hub gene ranking algorithms (Degree, Maximum Neighborhood Component, Betweenness Centrality, Closeness Centrality, and Stress Centrality) with machine learning (ML). Both workflows aim to determine the top genes that best distinguish cancer types based on the CTC mRNA data. We demonstrate that our automated, robust DL framework (DNNraw) more accurately indicates the presence of multiple cancer types using the CTC gene expression data than multiple ML approaches. The DL approach achieved average precision of 0.9652, recall of 0.9640, f1-score of 0.9638 and overall accuracy of 0.9640. Furthermore, since we designed multiple approaches, we also provide a bioinformatics analysis of the gene commonly identified as top-ranked by the different methods. To our knowledge, this is the first study wherein a generic approach has been developed to predict the presence of multiple cancer types using raw CTC mRNA data, as opposed to other models that require a feature selection step.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app