Add like
Add dislike
Add to saved papers

Diadromy Drives Elevated Rates of Trait Evolution and Ecomorphological Convergence in Clupeiformes (Herring, Shad, and Anchovies).

American Naturalist 2023 December
AbstractMigration can have a profound influence on rates and patterns of phenotypic evolution. Diadromy is the migration between marine and freshwater habitats for feeding and reproduction that can require individuals to travel tens to thousands of kilometers. The high energetic demands of diadromy are predicted to select for ecomorphological traits that maximize swimming and locomotor efficiency. Intraspecific studies have shown repeated instances of divergence among diadromous and nondiadromous populations in locomotor and foraging traits, which suggests that at a macroevolutionary scale diadromous lineages may experience convergent evolution onto one or multiple adaptive optima. We tested for differences in rates and patterns of phenotypic evolution among diadromous and nondiadromous lineages in Clupeiformes, a clade that has evolved diadromy more than 10 times. Our results show that diadromous clupeiforms show convergent evolution for some locomotor traits and faster rates of evolution, which we propose are adaptive responses to the locomotor demands of migration. We also find evidence that diadromous lineages show convergence into multiple regions of multivariate trait space and suggest that these respective trait spaces are associated with differences in migration and trophic ecology. However, not all locomotor traits and no trophic traits show evidence of convergence or elevated rates of evolution associated with diadromy. Our results show that long-distance migration influences the tempo and patterns of phenotypic evolution at macroevolutionary scales, but there is not a single diadromous syndrome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app