Add like
Add dislike
Add to saved papers

Machine Learning Models for ASCVD Risk Prediction in an Asian Population - How to Validate the Model is Important.

INTRODUCTION: Atherosclerotic cardiovascular disease (ASCVD) is prevalent worldwide including Taiwan, however widely accepted tools to assess the risk of ASCVD are lacking in Taiwan. Machine learning models are potentially useful for risk evaluation. In this study we used two cohorts to test the feasibility of machine learning with transfer learning for developing an ASCVD risk prediction model in Taiwan.

METHODS: Two multi-center observational registry cohorts, T-SPARCLE and T-PPARCLE were used in this study. The variables selected were based on European, U.S. and Asian guidelines. Both registries recorded the ASCVD outcomes of the patients. Ten-fold validation and temporal validation methods were used to evaluate the performance of the binary classification analysis [prediction of major adverse cardiovascular (CV) events in one year]. Time-to-event analyses were also performed.

RESULTS: In the binary classification analysis, eXtreme Gradient Boosting (XGBoost) and random forest had the best performance, with areas under the receiver operating characteristic curve (AUC-ROC) of 0.72 (0.68-0.76) and 0.73 (0.69-0.77), respectively, although it was not significantly better than other models. Temporal validation was also performed, and the data showed significant differences in the distribution of various features and event rate. The AUC-ROC of XGBoost dropped to 0.66 (0.59-0.73), while that of random forest dropped to 0.69 (0.62-0.76) in the temporal validation method, and the performance also became numerically worse than that of the logistic regression model. In the time-to-event analysis, most models had a concordance index of around 0.70.

CONCLUSIONS: Machine learning models with appropriate transfer learning may be a useful tool for the development of CV risk prediction models and may help improve patient care in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app