Add like
Add dislike
Add to saved papers

Broadband transparent ultrasound transducer with polymethyl methacrylate as matching layer for in vivo photoacoustic microscopy.

Photoacoustics 2023 October
Photoacoustic imaging (PAI) uniquely combines optics and ultrasound, presenting a promising role in biomedical imaging as a non-invasive and label-free imaging technology. As the traditional opaque ultrasound (US) transducers could hinder the transportation of the excitation light and limit the performance of PAI system, piezoelectric transparent ultrasonic transducers (TUTs) with indium tin oxide (ITO) electrodes have been developed to allow light transmission through the transducer and illuminate the sample directly. Nevertheless, without having transparent matching materials with appropriate properties, the bandwidth of those TUTs was generally narrow. In this work, we propose to employ polymethyl methacrylate (PMMA) as the matching layer material to improve the bandwidth of lithium niobate (LN)-based TUTs. The effects of PMMA matching layer on the performance of TUTs have been systematically studied. With the optimized PMMA matching layer, the very wide bandwidth of > 50 % could be achieved for the TUTs even with different transducer frequencies, leading to the great enhancement of axial resolution when compared to the similar reported work. In addition, the imaging performance of the developed TUT prototype has been evaluated in a PAI system and demonstrated by both phantom and in vivo small animal imaging.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app