Read by QxMD icon Read


Wenzhong Liu, Hao F Zhang
The eye relies on the synergistic cooperation of many different ocular components, including the cornea, crystalline lens, photoreceptors, and retinal neurons, to precisely sense visual information. Complications with a single ocular component can degrade vision and sometimes cause blindness. Immediate treatment and long-term monitoring are paramount to alleviate symptoms, restore vision, and cure ocular diseases. However, successful treatment requires understanding ocular pathological mechanisms, precisely detecting and monitoring the diseases...
September 2016: Photoacoustics
Markus Seeger, Angelos Karlas, Dominik Soliman, Jaroslav Pelisek, Vasilis Ntziachristos
Carotid artery atherosclerosis is a main cause of stroke. Understanding atherosclerosis biology is critical in the development of targeted prevention and treatment strategies. Consequently, there is demand for advanced tools investigating atheroma pathology. We consider hybrid optoacoustic and multiphoton microscopy for the integrated and complementary interrogation of plaque tissue constituents and their mutual interactions. Herein, we visualize human carotid plaque using a hybrid multimodal imaging system that combines optical resolution optoacoustic (photoacoustic) microscopy, second and third harmonic generation microscopy, and two-photon excitation fluorescence microscopy...
September 2016: Photoacoustics
Saher M Maswadi, Bennett L Ibey, Caleb C Roth, Dmitri A Tsyboulski, Hope T Beier, Randolph D Glickman, Alexander A Oraevsky
Optoacoustic (OA) microscopy using an all-optical system based on the probe beam deflection technique (PBDT) for detection of laser-induced acoustic signals was investigated as an alternative to conventional piezoelectric transducers. PBDT provides a number of advantages for OA microscopy including (i) efficient coupling of laser excitation energy to the samples being imaged through the probing laser beam, (ii) undistorted coupling of acoustic waves to the detector without the need for separation of the optical and acoustic paths, (iii) high sensitivity and (iv) ultrawide bandwidth...
September 2016: Photoacoustics
Takashi Buma, Jessica L Farland, Margaret R Ferrari
We demonstrate optical resolution photoacoustic microscopy (OR-PAM) of lipid-rich tissue using a multi-wavelength pulsed laser based on nonlinear fiber optics. 1047 nm laser pulses are converted to 1098, 1153, 1215, and 1270 nm pulses via stimulated Raman scattering in a graded-index multimode fiber. Multispectral PAM of a lipid phantom is demonstrated with our low-cost and simple technique.
September 2016: Photoacoustics
Hao F Zhang, Daniel Razansky
No abstract text is available yet for this article.
September 2016: Photoacoustics
K Gerrit Held, Michael Jaeger, Jaro Rička, Martin Frenz, H Günhan Akarçay
Spectral optoacoustic (OA) imaging enables spatially-resolved measurement of blood oxygenation levels, based on the distinct optical absorption spectra of oxygenated and de-oxygenated blood. Wavelength-dependent optical attenuation in the bulk tissue, however, distorts the acquired OA spectrum and thus makes quantitative oxygenation measurements challenging. We demonstrate a correction for this spectral distortion without requiring a priori knowledge of the tissue optical properties, using the concept of multiple irradiation sensing: recording the OA signal amplitude of an absorbing structure (e...
June 2016: Photoacoustics
Alexander Dima, Vasilis Ntziachristos
We interrogated the application and imaging features obtained by non-invasive and handheld optoacoustic imaging of the thyroid in-vivo. Optoacoustics can offer complementary contrast to ultrasound, by resolving optical absorption-based and offering speckle-free imaging. In particular we inquired whether vascular structures could be better resolved using optoacoustics. For this reason we developed a compact handheld version of real-time multispectral optoacoustic tomography (MSOT) using a detector adapted to the dimensions and overall geometry of the human neck...
June 2016: Photoacoustics
Ivan Pelivanov, Łukasz Ambroziński, Anton Khomenko, Ermias G Koricho, Gary L Cloud, Mahmoodul Haq, Matthew O'Donnell
Damage induced in polymer composites by various impacts must be evaluated to predict a component's post-impact strength and residual lifetime, especially when impacts occur in structures related to human safety (in aircraft, for example). X-ray tomography is the conventional standard to study an internal structure with high resolution. However, it is of little use when the impacted area cannot be extracted from a structure. In addition, X-ray tomography is expensive and time-consuming. Recently, we have demonstrated that a kHz-rate laser-ultrasound (LU) scanner is very efficient both for locating large defects and evaluating the material structure...
June 2016: Photoacoustics
Quan Zhou, Zhao Li, Juan Zhou, Bishnu P Joshi, Gaoming Li, Xiyu Duan, Rork Kuick, Scott R Owens, Thomas D Wang
EGFR is a promising cell surface target for in vivo imaging that is highly overexpressed in hepatocellular carcinoma (HCC), a common cancer worldwide. Peptides penetrate easily into tumors for deep imaging, and clear rapidly from the circulation to minimize background. We aim to demonstrate use of an EGFR specific peptide to detect HCC xenograft tumors in mice with photoacoustic imaging. Nude mice implanted with human HCC cells that overexpress EGFR were injected intravenously with Cy5.5-labeled EGFR and scrambled control peptides respectively...
June 2016: Photoacoustics
Eric M Strohm, Michael J Moore, Michael C Kolios
High resolution ultrasound and photoacoustic images of stained neutrophils, lymphocytes and monocytes from a blood smear were acquired using a combined acoustic/photoacoustic microscope. Photoacoustic images were created using a pulsed 532 nm laser that was coupled to a single mode fiber to produce output wavelengths from 532 nm to 620 nm via stimulated Raman scattering. The excitation wavelength was selected using optical filters and focused onto the sample using a 20× objective. A 1000 MHz transducer was co-aligned with the laser spot and used for ultrasound and photoacoustic images, enabling micrometer resolution with both modalities...
March 2016: Photoacoustics
Emmanuel Bossy, Sylvain Gigan
Since its introduction in the mid-nineties, photoacoustic imaging of biological tissue has been one of the fastest growing biomedical imaging modality, and its basic principles are now considered as well established. In particular, light propagation in photoacoustic imaging is generally considered from the perspective of transport theory. However, recent breakthroughs in optics have shown that coherent light propagating through optically scattering medium could be manipulated towards novel imaging approaches...
March 2016: Photoacoustics
Jie Hui, Rui Li, Evan H Phillips, Craig J Goergen, Michael Sturek, Ji-Xin Cheng
The quantized vibration of chemical bonds provides a way of detecting specific molecules in a complex tissue environment. Unlike pure optical methods, for which imaging depth is limited to a few hundred micrometers by significant optical scattering, photoacoustic detection of vibrational absorption breaks through the optical diffusion limit by taking advantage of diffused photons and weak acoustic scattering. Key features of this method include both high scalability of imaging depth from a few millimeters to a few centimeters and chemical bond selectivity as a novel contrast mechanism for photoacoustic imaging...
March 2016: Photoacoustics
Volker Neuschmelting, Neal C Burton, Hannah Lockau, Alexander Urich, Stefan Harmsen, Vasilis Ntziachristos, Moritz F Kircher
A handheld approach to optoacoustic imaging is essential for the clinical translation. The first 2- and 3-dimensional handheld multispectral optoacoustic tomography (MSOT) probes featuring real-time unmixing have recently been developed. Imaging performance of both probes was determined in vitro and in a brain melanoma metastasis mouse model in vivo. T1-weighted MR images were acquired for anatomical reference. The limit of detection of melanoma cells in vitro was significantly lower using the 2D than the 3D probe...
March 2016: Photoacoustics
Hassan S Salehi, Patrick D Kumavor, Hai Li, Umar Alqasemi, Tianheng Wang, Chen Xu, Quing Zhu
A hand-held transvaginal probe suitable for co-registered photoacoustic and ultrasound imaging of ovarian tissue was designed and evaluated. The imaging probe consists of an ultrasound transducer and four 1-mm-core multi-mode optical fibers both housed in a custom-made sheath. The probe was optimized for the highest light delivery output and best beam uniformity on tissue surface, by simulating the light fluence and power output for different design parameters. The laser fluence profiles were experimentally measured through chicken breast tissue and calibrated intralipid solution at various imaging depths...
September 2015: Photoacoustics
M Qu, M Mehrmohammadi, S Y Emelianov
Many biomedical applications necessitate a targeted intracellular delivery of the nanomaterial to specific cells. Therefore, a non-invasive and reliable imaging tool is required to detect both the delivery and cellular endocytosis of the nanoparticles. Herein, we demonstrate that magneto-photo-acoustic (MPA) imaging can be used to monitor the delivery and to identify endocytosis of magnetic and optically absorbing nanoparticles. The relationship between photoacoustic (PA) and magneto-motive ultrasound (MMUS) signals from the in vitro samples were analyzed to identify the delivery and endocytosis of nanoparticles...
September 2015: Photoacoustics
Changho Lee, Donghyun Lee, Qifa Zhou, Jeehyun Kim, Chulhong Kim
We developed a near infrared (NIR) virtual intraoperative surgical photoacoustic microscopy (NIR-VISPAM) system that combines a conventional surgical microscope and an NIR light photoacoustic microscopy (PAM) system. NIR-VISPAM can simultaneously visualize PA B-scan images at a maximum display rate of 45 Hz and display enlarged microscopic images on a surgeon's view plane through the ocular lenses of the surgical microscope as augmented reality. The use of the invisible NIR light eliminated the disturbance to the surgeon's vision caused by the visible PAM excitation laser in a previous report...
September 2015: Photoacoustics
P J van den Berg, K Daoudi, W Steenbergen
Flow imaging is an important method for quantification in many medical imaging modalities, with applications ranging from estimating wall shear rate to detecting angiogenesis. Modalities like ultrasound and optical coherence tomography both offer flow imaging capabilities, but suffer from low contrast to red blood cells and are sensitive to clutter artefacts. Photoacoustic imaging (PAI) is a relatively new field, with a recent interest in flow imaging. The recent enthusiasm for PA flow imaging is due to its intrinsic contrast to haemoglobin, which offers a new spin on existing methods of flow imaging, and some unique approaches in addition...
September 2015: Photoacoustics
Muyinatu A Lediju Bell, Anastasia K Ostrowski, Ke Li, Peter Kazanzides, Emad M Boctor
Neurosurgeries to remove pituitary tumors using the endonasal, transsphenoidal approach often incur the risk of patient death caused by injury to the carotid arteries hidden by surrounding sphenoid bone. To avoid this risk, we propose intraoperative photoacoustic vessel visualization with an optical fiber attached to the surgical tool and an external ultrasound transducer placed on the temple. Vessel detection accuracy is limited by acoustic propagation properties, which were investigated with k-Wave simulations...
June 2015: Photoacoustics
B Verstraeten, J Sermeus, R Salenbien, J Fivez, G Shkerdin, C Glorieux
The underlying working principle of detecting impulsive stimulated scattering signals in a differential configuration of heterodyne diffraction detection is unraveled by involving optical scattering theory. The feasibility of the method for the thermoelastic characterization of coating-substrate systems is demonstrated on the basis of simulated data containing typical levels of noise. Besides the classical analysis of the photoacoustic part of the signals, which involves fitting surface acoustic wave dispersion curves, the photothermal part of the signals is analyzed by introducing thermal wave dispersion curves to represent and interpret their grating wavelength dependence...
June 2015: Photoacoustics
Lian Xiong, Jennifer M Ruddock, Gerald J Diebold
Irradiation of an optically thin layer immersed in a transparent fluid with pulsed laser radiation can generate photoacoustic waves through two mechanisms. The first of these is the conventional optical heating of the layer followed by thermal expansion, in which the mechanical motion of the expansion launches a pair of oppositely directed sound waves. A second, recently reported mechanism, is operative when heat is conducted to the transparent medium raising its temperature, while at the same time reducing the temperature in the absorbing body...
June 2015: Photoacoustics
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"