Add like
Add dislike
Add to saved papers

BushenHuoxue formula promotes osteogenic differentiation via affecting Hedgehog signaling pathway in bone marrow stem cells to improve osteoporosis symptoms.

BACKGROUND: The BushenHuoxue formula (BSHX) has been previously demonstrated to ameliorate osteoporosis, but the mechanisms underlying this phenomenon are currently unclear. The present study aims at investigating the mechanisms that BSHX induces osteogenesis.

METHODS: We established an osteoporosis model in rats by bilateral ovariectomy and then treated the rats with an osteogenic inducer (dexamethasone, β-sodium glycerophosphate and Vitamin C) and BSHX. After that, bone marrow density and histopathological bone examination were evaluated by using HE staining and immunohistochemistry, respectively. We also assessed the differentiation of bone marrow mesenchymal stem cells (BMSCs) into osteoblasts by using immunofluorescence staining. ALP, BMP, and COL1A1 levels were determined by ELISA. We identified genes involved in pathogenesis of osteoporosis through Gene Expression Omnibus (GEO) database and subsequently selected Hedgehog signaling-related genes Shh, Ihh, Gli2, and Runx2 for assessment via qRT-PCR and ELISA, Western blotting. Network pharmacology analysis was performed to identify bioactive metabolites of BSHX.

RESULTS: BSHX treatment in osteoporosis model rats promoted tightening of the morphological structure of the trabecular bone and increased the bone mineral density (BMD). BSHX also increased levels of osteoblast makers ALP, BMP, and COL1A1. Additionally, bioinformatics analysis of the GEO dataset showed that Hedgehog signaling pathway was involved in pathogenesis of osteoporosis, especially related genes Shh, Ihh, Gli2, and Runx2. Remarkably, BHSX upregulated these genes indispensably involved in the osteogenesis-related Hedgehog signaling pathway in both bone tissue and BMSCs. Importantly, we identified that quercetin was the active compounds that involved in the mechanism of BSHX-improved OP via affecting Hedgehog-related genes.

CONCLUSION: Our results indicate that BSHX promotes osteogenesis by improving BMSC differentiation into osteoblasts via increased expression of Hedgehog signaling-related genes Shh, Ihh, Gli2, and Runx2, and quercetin was the bioactive compound of BSHX.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app