Add like
Add dislike
Add to saved papers

Attaining inhibition of sneak current and versatile logic operations in a singular halide perovskite memristive device by introducing appropriate interface barriers.

Nanoscale 2023 November 28
Emerging resistive switching devices hold the potential to realize densely packed passive nanocrossbar arrays, suitable for deployment as random access memory devices (ReRAMs) in both embedded and high-capacity storage applications. In this study, we have engineered ReRAMs comprising ITO/(UVO-treated) amorphous ZnO (a-ZnO)/MAPbI3 /Ag which effectively mitigate cross-talk currents without additional components. Significantly, we successfully executed a comprehensive set of 12 distinct 2-input sequential logic functions in a single halide perovskite ReRAM unit for the first time. Furthermore, these logic functions are devoid of any dependency on external light sources, entail merely 1 or 2 logic steps, and showcase symmetrical operability. A superior resistive switching behavior was achieved by harmonizing the charge transport within the bulk MAPbI3 and the tunneling barriers at the interfaces. The outcomes indicate progress in mitigating cross-talk and executing multiple logic functions within a single halide perovskite ReRAM unit, offering a new perspective for the advancement of halide perovskite ReRAMs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app