Add like
Add dislike
Add to saved papers

Analysis of ANRIL Isoforms and Key Genes in Patients with Severe Coronary Artery Disease.

ANRIL (Antisense Noncoding RNA in the INK4 Locus), also named CDKN2B-AS1, is a long non-coding RNA with outstanding functions that regulates genes involved in atherosclerosis development. ANRIL genotypes and the expression of linear and circular isoforms have been associated with coronary artery disease (CAD). The CDKN2A and the CDKN2B genes at the CDKN2A/B locus encode the Cyclin-Dependent Kinase inhibitor protein (CDKI) p16INK4a and the p53 regulatory protein p14ARF, which are involved in cell cycle regulation, aging, senescence, and apoptosis. Abnormal ANRIL expression regulates vascular endothelial growth factor (VEGF) gene expression, and upregulated Vascular Endothelial Growth Factor (VEGF) promotes angiogenesis by activating the NF-κB signaling pathway. Here, we explored associations between determinations of the linear, circular, and linear-to-circular ANRIL gene expression ratio, CDKN2A, VEGF and its receptor kinase insert domain-containing receptor (KDR) and cardiovascular risk factors and all-cause mortality in high-risk coronary patients before they undergo coronary artery bypass grafting surgery (CABG). We found that the expression of ANRIL isoforms may help in the prediction of CAD outcomes. Linear isoforms were correlated with a worse cardiovascular risk profile while the expression of circular isoforms of ANRIL correlated with a decrease in oxidative stress. However, the determination of the linear versus circular ratio of ANRIL did not report additional information to that determined by the evaluation of individual isoforms. Although the expressions of the VEFG and KDR genes correlated with a decrease in oxidative stress, in binary logistic regression analysis it was observed that only the expression of linear isoforms of ANRIL and VEGF significantly contributed to the prediction of the number of surgical revascularizations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app