Add like
Add dislike
Add to saved papers

Caffeine Administration in Piglets with Low Birthweight and Low Vitality Scores, and Its Effect on Physiological Blood Profile, Acid-Base Balance, Gas Exchange, and Infrared Thermal Response.

Intrapartum asphyxia, fetal hypoxia, and their consequences (e.g., acidosis, hypercapnia, hypoglycemia, and hypothermia) are the main factors related to physio-metabolic imbalances that increase neonatal mortality in piglets, particularly in piglets with low birthweight and low vitality scores. This study aimed to evaluate the effect of three different doses of caffeine (10, 20, and 30 mg/kg) administered orally to 480 newborn piglets with low birthweight and low vitality scores. Blood gas parameters (pH, pO2 , pCO2 , and HCO3 - ), physio-metabolic profile (Ca++ , glucose, and lactate), and the thermal response assessed through infrared thermography in four thermal windows (ocular, auricular, snout, and hindlimb) and rectal temperature were evaluated during the first 24 h of life. Doses of 30 mg/kg resulted in significant differences at 24 h for all evaluated parameters, suggesting that caffeine administration improved the cardiorespiratory function and metabolic activity of piglets by reducing acidosis, restoring glycemia, and increasing surface and rectal temperature. In conclusion, caffeine at 30 mg/kg could be suggested as an appropriate dose to use in piglets with low birthweight and low vitality scores. Future research might need to study the presentation of adverse effects due to higher caffeine concentrations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app