Add like
Add dislike
Add to saved papers

Attenuated AKT signaling by miR-146a-5p interferes with chicken granulosa cell proliferation, lipid deposition and progesterone biosynthesis.

Theriogenology 2023 November 18
Steroid hormones play a crucial role in the growth and maturation of poultry ovarian follicles, with progesterone secretion by granulosa cells (GC) being essential. According to our previous transcriptome analysis, it apparented that miR-146a-5p expressions were upregulated in the follicles undergoing atresia. In this study, we delved the depth to explore the underlying mechanisms by miR-146a-5p in the regulation of follicle functions in chicken. The study demonstrated that miR-146a-5p suppressed cell growth, lipids accumulation, and progesterone biosynthesis in chicken GC. Through targeting association validations, we identified delta 4-desaturase, sphingolipid 1 (DEGS1) as capable of interacting with miR-146a-5p. Co-transfection experiments further confirmed that DEGS1 reversed the impairment of GC functions by miR-146a-5p. Moreover, we discovered that miR-146a-5p suppressed AKT phosphorylation, while DEGS1 enhanced AKT phosphorylation. Phosphatidylinositol-3 kinase (PI3K) inhibitor (LY294002) studies showed that miR-146a-5p would inhibit AKT phosphorylation by governing the DEGS1/AKT pathway, which in turn regulates GC function. In summary, the findings revealed that miR-146a-5p suppressed cell growth, lipid deposition, and progesterone biosynthesis via the DEGS1/AKT pathway. These results may further enrich our understandings of how non-coding RNA regulates productive performance in chickens.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app