Add like
Add dislike
Add to saved papers

Alleviated lead toxicity in rice plant by co-augmented action of genome doubling and TiO 2 nanoparticles on gene expression, cytological and physiological changes.

Lead is a very toxic and futile heavy metal for rice plants because of its injurious effects on plant growth and metabolic processes. Polyploidy or whole genome doubling increases the ability of plants to withstand biotic and abiotic stress. Considering the beneficial effects of nanoparticles and tetraploid rice, this research was conducted to examine the effectiveness of tetraploid and titanium dioxide nanoparticles (TiO2 NPs) in mitigating the toxic effects of lead. A diploid (E22-2x) and it's tetraploid (T-42) rice line were treated with Pb (200 μM) and TiO2 NPs (15 mg L-1 ). Lead toxicity dramatically reduced shoot length (16 % and 4 %) and root length (17 % and 9 %), biological yield (55 % and 36 %), and photosynthetic activity, as evidenced by lower levels of chlorophyll a and b (30 % and 9 %) in E-22 and T-42 rice cultivars compared to the control rice plants, respectively. Furthermore, lead toxicity amplified the levels of reactive oxygen species (ROS), such as malondialdehyde and H2 O2 , while decreasing activities of all antioxidant enzymes, such as superoxidase, peroxidase, and glutathione predominately in the diploid cultivar. Transmission electron microscopy and semi-thin section observations revealed that Pb-treated cells in E22-2x had more cell abnormalities than T-42, such as irregularly shaped mitochondria, cell wall, and reduced root cell size. Polyploidy and TiO2 reduced Pb uptake in rice cultivars and expression levels of metal transporter genes such as OsHMA9 and OsNRAMP5. According to the findings, genome doubling alleviates Pb toxicity by reducing Pb accumulation, ROS, and cell damage. Tetraploid rice can withstand the toxic effect of Pb better than diploid rice, and TiO2 NPs can alleviate the toxic impact of Pb. Our study findings act as a roadmap for future research endeavours, directing the focus toward risk management and assessing long-term impacts to balance environmental sustainability and agricultural growth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app