Add like
Add dislike
Add to saved papers

Synergistic effects of punicic acid and alpha lipoic acid ameliorate inflammatory and metabolic genes expression in C2C12 myoblast cells under oxidative stress condition.

Inflammation is a reaction of the immune system to infection and injury; in fact, it positioned at the center of metabolic disorders, particularly obesity, type 2 diabetes, and cardiovascular diseases. Thus play a major role not only in their development, but also exerts as a crucial linking factor among those diseases. In this regard, one of the strategies for tackling this problem is application of antioxidants to treat such diseases. The present study was performed to evaluate the synergistic effects of punicic acid (PUA) and alpha-lipoic acid (ALA) as antioxidants and radical scavenging reagents on the expression of some inflammatory and metabolism-related genes under oxidative stress in the muscle cells. The experimental treatments consisted of a range of 20, 40, 80, 160, and 320 µM of PUA, and 5, 25, 50, 100, and 200 µM of ALA with a 200 µM concentration of H2 O2 as an oxidative stress inducer. Accordingly, fatty acid treatments were applied for 24 h, and H2 O2 was treated for 1 h. Our results indicated that the simultaneous treatment of PUA and ALA at optimal concentrations (80 and 50 µM, respectively) decreased the expression of inflammation genes and increased the expression of regulatory genes (Pparγ, Pgc-1α) related to metabolism (p < .05). Unexpectedly, H2 O2 treatment increased the Fndc5 expression (p < .05). Maximal upregulation of Pparγ, Pgc-1α were obtained when fatty acids combination (PUA and ALA) were used in the culture of H2 O2 treated cells (p < .05). Therefore, our findings suggest that the simultaneous use of PUA and ALA fatty acids could reduce oxidative stress, and the expression of inflammatory genes, thereby improving the cell metabolism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app