Add like
Add dislike
Add to saved papers

Pd@HKUST-1@Cu(II)/CMC composite bead as an efficient synergistic bimetallic catalyst for Sonogashira cross-coupling reactions.

Carbohydrate Polymers 2024 January 16
We fabricated an efficient Pd@HKUST-1@Cu(II)/CMC composite bead catalyst through an innovative strategy based on the unique properties of metal-organic frameworks (MOFs) and carboxymethylcellulose (CMC). In this strategy, HKUST-1 MOFs were grown in-situ on the surface of micrometer-sized Cu-based CMC beads (Cu(II)/CMC), then Pd(II) ions were incorporated into the pores of the MOF and further be partially reduced to Pd(0) NPs, which is an active species for oxidative addition with aryl halides in Sonogashira reactions. The micron-sized Cu(II)/CMC beads were formed through inter/intramolecularly crosslinking facilitated by Cu(II) ions, which was achieved by the metathesis of Cu(II) with numerous carboxylic groups of CMC. Such Cu(II)/CMC bead offers many Cu(II) ions as interaction sites for in-situ nucleation and growth of HKUST-1 MOFs. The architecture and composition of the prepared Pd@HKUST-1@Cu(II)/CMC composite were fully verified by various techniques such as FTIR, XRD, TGA, BET, XPS, SEM, TEM, EDX, and elemental mapping analysis. This novel composite bead was applied as an efficient and reusable heterogeneous Pd/Cu bimetallic catalyst for Sonogashira reactions, decarbonylative Sonogashira reaction, and Sonogashira cyclization tandem reactions. The catalyst is readily isolated by simple filtration, and can be reused for five consecutive runs with retaining its activity and structural integrity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app