Add like
Add dislike
Add to saved papers

A single-site porphyrin (Cu)-based COF electrocatalyst for the electrochemical detection of gallic acid sensitively.

Analytica Chimica Acta 2023 December 2
Sensitive and convenient determination of gallic acid (GA) is vital for food safety. Here, a novel porphyrin (Cu)-based covalent organic framework named as COF(Cu) was successfully synthesized by condensing pre-metalated 5,10,15,20-tetrakis (para-aminophenyl) porphyrin copper (II) and 2,3,6,7-tetra (4-formylphenyl) tetrathiafulvalene ligands. By combining the advantages of porphyrin with tetrathiafulvalene, it may be possible to create a COF with an intrinsically effective charge-transfer channel. In addition, the Cu-N4 type in the COF(Cu) can be regarded as the single-site electrocatalyst. Benefiting from these advantages, the COF(Cu) based electrochemical sensor demonstrated outstanding response to gallic acid (GA). Under the optimal conditions by square wave voltammetry technique, the COF(Cu) modified electrode showed a wide linear range (0.01-1000 μM), a low detection limit (2.81 nM), good reproducibility, acceptable selectivity as well as high stability. Moreover, the established approach was adopted to detect GA in real tea samples with good recoveries, indicating that the COF(Cu) based electrochemical sensor may pave the way for the application in food analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app