Add like
Add dislike
Add to saved papers

A novel pbd gene cluster responsible for pyrrole and pyridine ring cleavage in Rhodococcus ruber A5.

Pyridine and pyrrole, which are regarded as recalcitrant chemicals, are released into the environment as a result of industrial manufacturing processes, posing serious hazards to both the environment and human health. However, the pyrrole degradation mechanism and the pyridine-degrading gene in Rhodococcus are unknown. Herein, a highly efficient pyridine and pyrrole degradation strain Rhodococcus ruber A5 was isolated. Strain A5 completely degraded 1000 mg/L pyridine in a mineral salt medium within 24 h. The pyridine degradation of strain A5 was optimized using the BoxBehnken design. The optimum degradation conditions were found to be pH 7.15, temperature 28.06 ℃, and inoculation amount 1290.94 mg/L. The pbd gene clusters involved in pyridine degradation were discovered via proteomic analysis. The initial ring cleavage of pyridine and pyrrole in strain A5 was carried out by the two-component flavin-dependent monooxygenase PbdA/PbdE. The degradation pathways of pyridine and pyrrole were proposed by the identification of metabolites and comparisons of homologous genes. Additionally, homologous pbd gene clusters were found to exist in different bacterial genomes. Our study revealed the ring cleavage mechanisms of pyrrole and pyridine, and strain A5 was identified as a promising resource for pyridine bioremediation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app