Add like
Add dislike
Add to saved papers

Spindle Monitor: A Tool for Real-Time Assessment and Concurrent Treatment of Postoperative Tumor Prognosis.

Analytical Chemistry 2023 November 17
Cancer surgery remains a mainstay in clinical treatment. However, the efficacy of subsequent therapies largely depends on the precise evaluation of postoperative prognoses, underscoring the critical need for a comprehensive and accurate assessment of surgical outcomes. Nanoprobes targeting tumors offer a promising solution for visual prognostic assessment. In this study, we developed a "Spindle Monitor" system, designated as APPADs (Au NBPs@PDA-pep-AS1411-Dox), composed of core-shell nanoparticles. The core was made up of gold nanobipyramids (Au NBPs), coated with polydopamine (PDA), and subsequently loaded with peptide chains, AS1411, and doxorubicin (Dox). Upon deployment in the acidic tumor microenvironment (TME), APPADs released substantial amounts of Dox, initiating the apoptotic process. This triggered the activity of caspase-3, which is a crucial executor in the apoptotic pathway. Consequently, DEVD, a specific recognition site for caspase-3, was cleaved, enabling the disconnection of FITC-conjugated peptide chains and the recovery of fluorescence. Through assessing this fluorescence imaging effect, local laser irradiation could be precisely guided to the postoperative site, facilitating a synergistic combination of photothermal therapy and chemotherapy. Specifically, our "Spindle Monitor" APPADs had been validated to achieve accurate fluorescence imaging in vitro and in vivo , which demonstrated its potential value as a versatile tool for evaluating postoperative prognosis in surgical treatments, such as thyroid cancer, and assessing chemotherapy efficacy in difficult cases, like late-stage osteosarcoma. This promising tool lays a good foundation for development in visual prognosis evaluation after tumor surgery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app