Add like
Add dislike
Add to saved papers

Intelligent diagnosis and prediction of turbine digital electro-hydraulic control system faults: Design and experimentation.

A physical modeling approach was adopted to build a Digital Electro-Hydraulic Control (DEH) system simulation model and the fault models using the SIMULINK tool. This research combined the advantages of the gray system and neural network to build a multi-parameter gray error neural network fault prediction model for the first time. Furthermore, an embedded platform for intelligent fault diagnosis and prediction was developed using an Application Specific Integrated Circuit chip. The results show that the simulation model of the DEH system has good performance. A jam fault, internal leakage, and a device fault could be accurately identified through the fault diagnosis model. The multi-parameter gray error neural network prediction model improves the accuracy of fault prediction. The embedded platform developed by the Application Specific Integrated Circuit chip solves the problem of transmission limitation and insufficient computing power. It realizes the intelligent diagnosis and prediction of DEH system faults and guarantees the regular operation of the DEH system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app