Add like
Add dislike
Add to saved papers

Overexpression of JNK-associated leucine zipper protein induces chromosomal instability through interaction with dynein light intermediate chain 1.

The c-Jun N-terminal kinase-associated leucine zipper protein (JLP), a scaffold protein of mitogen-activated protein kinase signaling pathways, is a multifunctional protein involved in a variety of cellular processes. It has been reported that JLP is overexpressed in various types of cancer and is expected to be a potential therapeutic target. However, whether and how JLP overexpression affects non-transformed cells remain unknown. Here, we aimed to investigate the effect of JLP overexpression on chromosomal stability in human non-transformed cells and the mechanisms involved. We found that aneuploidy was induced in JLP-overexpressed cells. Moreover, we established JLP-inducible cell lines and observed an increased frequency of chromosome missegregation, reduced time from nuclear envelope breakdown to anaphase onset, and decreased levels of the spindle assembly checkpoint (SAC) components at the prometaphase kinetochore in cells overexpressing the wild-type JLP. In contrast, we observed that a point mutant JLP lacking the ability to interact with dynein light intermediate chain 1 (DLIC1) failed to induce chromosomal instability. Our results suggest that overexpression of the wild-type JLP facilitates premature SAC silencing through interaction with DLIC1, leading to aneuploidy. This study provides a novel insight into the mechanism through which JLP overexpression is associated with cancer development and progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app