Add like
Add dislike
Add to saved papers

Development of Ferroelectric P(VDF-TrFE) Microparticles for Ultrasound-Driven Cancer Cell Killing.

Current breast cancer treatments involve aggressive and invasive methods, leaving room for new therapeutic approaches to emerge. In this work, we explore the possibility of using piezoelectric [P(VDF-TrFE)] microparticles (MPs) as a source of inducing irreversible electroporation (IRE) of 4T1 breast cancer cells. We detail the MP formation mechanism and size control and subsequent characterizations of the as-synthesized MPs which confirms the presence of piezoelectric β-phase. Production of the necessary piezoelectric output of the MPs is achieved by ultrasound agitation. We confirm the primary factor of the IRE effect on 4T1 breast cancer cells to be the local electric field produced from the MPs by using confocal imaging and an alamarBlue assay. The results show a 52.6% reduction in cell viability, indicating that the MP treatment can contribute to a reduction of live cancer cells. The proposed method of ultrasound-stimulated P(VDF-TrFE) MPs may offer a more benign cancer treatment approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app