Add like
Add dislike
Add to saved papers

Acute Endoplasmic Reticulum Stress Suppresses Hepatic Gluconeogenesis by Stimulating MAPK Phosphatase 3 Degradation.

Drug-induced liver injury (DILI) is a widespread and harmful disease, and is closely linked to acute endoplasmic reticulum (ER) stress. Previous reports have shown that acute ER stress can suppress hepatic gluconeogenesis and even leads to hypoglycemia. However, the mechanism is still unclear. MAPK phosphatase 3 (MKP-3) is a positive regulator for gluconeogenesis. Thus, this study was conducted to investigate the role of MKP-3 in the suppression of gluconeogenesis by acute ER stress, as well as the regulatory role of acute ER stress on the expression of MKP-3. Results showed that acute ER stress induced by tunicamycin significantly suppressed gluconeogenesis in both hepatocytes and mouse liver, reduced glucose production level in hepatocytes, and decreased fasting blood glucose level in mice. Additionally, the protein level of MKP-3 was reduced by acute ER stress in both hepatocytes and mouse liver. Mkp-3 deficiency eliminated the inhibitory effect of acute ER stress on gluconeogenesis in hepatocytes. Moreover, the reduction effect of acute ER stress on blood glucose level and hepatic glucose 6-phosphatase ( G6pc ) expression was not observed in the liver-specific Mkp-3 knockout mice. Furthermore, activation of protein kinase R-like ER kinase (PERK) decreased the MKP-3 protein level, while inactivation of PERK abolished the reduction effect of acute ER stress on the MKP-3 protein level in hepatocytes. Taken together, our study suggested that acute ER stress could suppress hepatic gluconeogenesis by stimulating MKP-3 degradation via PERK, at least partially. Thus, MKP-3 might be a therapeutic target for DILI-related hypoglycemia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app