Add like
Add dislike
Add to saved papers

Design of Hollow Porous P-NiCo 2 O 4 @Co 3 O 4 Nanoarray and Its Alkaline Aqueous Zinc-Ion Battery Performance.

Alkaline aqueous zinc-ion batteries possess a wider potential window than those in mildly acidic systems; they can achieve high energy density and are expected to become the next generation of energy storage devices. In this paper, a hollow porous P-NiCo2 O4 @Co3 O4 nanoarray is obtained by ion etching and the calcination and phosphating of ZiF-67, which is directly grown on foam nickel substrate, as a precursor. It exhibits excellent performance as a cathode material for alkaline aqueous zinc-ion batteries. A high discharge specific capacity of 225.3 mAh g-1 is obtained at 1 A g-1 current density, and it remains 81.9% when the current density is increased to 10 A g-1 . After one thousand cycles of charging and discharging at 3 A g-1 current density, the capacity retention rate is 88.8%. Even at an excellent power density of 25.5 kW kg-1 , it maintains a high energy density of 304.5 Wh kg-1 . It is a vital, promising high-power energy storage device for large-scale applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app