Add like
Add dislike
Add to saved papers

Precision Measurement of CP Violation in the Penguin-Mediated Decay B_{s}^{0}→ϕϕ.

Physical Review Letters 2023 October 28
A flavor-tagged time-dependent angular analysis of the decay B_{s}^{0}→ϕϕ is performed using pp collision data collected by the LHCb experiment at the center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 6  fb^{-1}. The CP-violating phase and direct CP-violation parameter are measured to be ϕ_{s}^{ss[over ¯]s}=-0.042±0.075±0.009  rad and |λ|=1.004±0.030±0.009, respectively, assuming the same values for all polarization states of the ϕϕ system. In these results, the first uncertainties are statistical and the second systematic. These parameters are also determined separately for each polarization state, showing no evidence for polarization dependence. The results are combined with previous LHCb measurements using pp collisions at center-of-mass energies of 7 and 8 TeV, yielding ϕ_{s}^{ss[over ¯]s}=-0.074±0.069  rad and |λ|=1.009±0.030. This is the most precise study of time-dependent CP violation in a penguin-dominated B meson decay. The results are consistent with CP symmetry and with the standard model predictions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app