Add like
Add dislike
Add to saved papers

Chronic exposure to nanocellulose altered depression-related behaviors in mice on a western diet: The role of immune modulation and the gut microbiome.

Life Sciences 2023 November 9
AIMS: To determine if cellulose nanofibrils (CNF) have potential applications as food additives.

MATERIALS AND METHODS: Male C57BL/6 mice on a Western diet were exposed to CNF for one month at a dose of 30 mg/kg by gavage. Male NOD mice, a model for type 1 diabetes (T1D), were used in a six-month study.

KEY FINDINGS: Sequencing analysis of 16S rRNA genes suggested significant changes in gut microbiome of male C57BL/6 mice exposed to CNF. Analysis of functional metagenomics indicated that many of the functional contents that might be altered following CNF ingestion were associated with lipid and carbohydrate processing. Further studies in NOD mice suggested that there were some decreases in the blood glucose levels during the insulin tolerance test and glucose tolerance test following CNF treatment. However, these small decreases were not considered biologically meaningful as there were no significant changes in either the area under the curve or the first-order rate constant for glucose disappearance. Moreover, serum concentrations of cytokines/chemokines including IL-3, IL-12(p70) and the keratinocyte chemoattractant were increased following chronic exposure to CNF. In addition, behavioral studies suggested that the percentage of immobility time during the tail-suspension test was significantly increased following six months of exposure to CNF in NOD mice, signifying an increase in depression-related behavior.

SIGNIFICANCE: Collectively, long-term CNF consumption was associated with changes in the ecology of the gut microbiome, immune homeostasis, and possibly energy metabolism and mental health in male NOD mice on a Western diet.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app