Add like
Add dislike
Add to saved papers

Establishment of Model Mice to Evaluate Low Niacin Nutritional Status.

Niacin is involved in many biological reactions relating energy metabolism, redox reactions, DNA repair and longevity, and low NAD levels with aging and feeding high fat diets develop and progress age-related diseases. Although recent findings suggest the requirement of niacin insufficient animal model to further study, appropriate animal models have not been established yet because niacin is biosynthesized from tryptophan via tryptophan-nicotinamide pathway. To establish model mice to evaluate niacin nutritional status, we used kynurenine 3-monooxygenase knock out (KMO-/- ) mice which lack NAD biosynthesis pathway from tryptophan. To determine the niacin requirement and assess niacin nutritional markers, 4 wk old KMO-/- mice were fed 2-30 mg/kg nicotinic acid containing diets for 28 d. More than 4 mg/kg but not less than 3 mg/kg nicotinic acid containing diets induced maximum growth, and niacin nutritional markers in the blood, liver and urine increased with increase of dietary nicotinic acid. These results showed that several niacin nutritional markers reflect niacin nutritional status, niacin nutritional status can be controlled by dietary nicotinic acid, and niacin requirement for maximum growth is 4 mg/kg nicotinic acid diets in the KMO-/- mice. This animal model useful to investigate pathophysiology and mechanism of niacin deficiency, clarify the relationships between niacin nutritional status and age-related and lifestyle diseases, and evaluate factors affecting niacin nutritional status.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app