Add like
Add dislike
Add to saved papers

Supramolecular chitin-based hydrogels with self-adapting and fast-degradation properties for enhancing wound healing.

Carbohydrate Polymers 2024 January 2
Due to the features of high porosity, high water content, and tunable viscoelasticity, hydrogels have attracted numerous attentions in the promotion of wound closure. However, the lack of abilities to adapt the wounds of complex shapes and prevent postoperative adhesion limits their therapeutic outcomes in wound healing. To address the above challenges, the supramolecular chitin-based (SMCT) hydrogels are created via the host-guest pre-assembly strategy of β-cyclodextrin (βCD) and adamantane (Ad). The reversible host-guest crosslinks endow the SMCT hydrogels with highly dynamic networks, which can better accommodate irregularly shaped wounds compared with the covalent chitin-based hydrogels with similar mechanical properties. In addition, the SMCT hydrogels show rapid in vivo degradability (degradation time ≈ 2 days) due to the enzyme-triggered degradability of chitin, which do not need to be removed from the wounds after service and thus avoid the secondary damage to skin during dressing change. Owing to the hydrophobic cavity of βCD, the SMCT hydrogels can facilitate the load and release of curcumin with anti-inflammatory, antibacterial, and antioxidative activities, thereby significantly improving the wound healing efficiency. This work provides valuable guidance to the design of self-adaptive and fast-degradable hydrogels that hold great potential for enhancing the wound healing in skin and other tissues.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app