Add like
Add dislike
Add to saved papers

Characterization of levans produced by levansucrases from Bacillus amyloliquefaciens and Gluconobacter oxydans: Structural, techno-functional, and anti-inflammatory properties.

Carbohydrate Polymers 2024 January 2
Levans of different structures and molecular weights (MW) can display various techno-functional and health-promoting properties. In the present study, selected levans were produced by the transfructosylation of sucrose catalyzed by levansucrases from Bacillus amyloliquefaciens and Gluconobacter oxydans, and their structural, techno-functional and anti-inflammatory properties were investigated. NMR and methylation/GC analysis confirmed the structure of β-(2, 6) levans. The structural characterization led to the classification of levans as high MW (HMW, ≥100 kDa), low MW (LMW, ≤20 kDa) and mix L/HMW ones. Levan with higher MW had more linear fructosyl units with fewer reducing ends and branching residues. LMW levan showed the highest foaming capacity and stability while HMW levan had the highest emulsion stability. HMW and mix L/HMW levans showed comparable water and oil-holding capacities, which were higher than LMW. HMW and mix L/HMW levans were found to have gelling properties at low concentrations. The rheological behaviour of HMW levan-based gel was a more viscous-like gel, while that of mix L/HMW levan-based one showed more elastic solid like-gel. The temperature also influenced the rheology of levan, showing that the mix L/HMW levan gel network was the most thermal stable as its viscoelasticity remained constant at the highest temperature (75 °C). Studies on the biological activity of levans of HMW and LMW revealed in-vitro anti-inflammatory properties as they significantly reduced the production of LPS-triggered pro-inflammatory cytokines in differentiated Caco-2 cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app