Journal Article
Review
Add like
Add dislike
Add to saved papers

Significance of poly(ethylene terephthalate) (PET) substrate crystallinity on enzymatic degradation.

New Biotechnology 2023 November 7
Poly(ethylene terephthalate) (PET) is a semi-crystalline plastic polyester material with a global production volume of 83 Mt/year. PET is mainly used in textiles, but also widely used for packaging materials, notably plastic bottles, and is a major contributor to environmental plastic waste accumulation. Now that enzymes have been demonstrated to catalyze PET degradation, new options for sustainable bio-recycling of PET materials via enzymatic catalysis have emerged. The enzymatic degradation rate is strongly influenced by the properties of PET, notably the degree of crystallinity, XC . The higher the XC of the PET material, the slower the enzymatic rate. Crystallization of PET, resulting in increased XC , is induced thermally (via heating) and/or mechanically (via stretching), and the XC of most PET plastic bottles and microplastics exceeds what currently known enzymes can readily degrade. The enzymatic action occurs at the surface of the insoluble PET material and improves when the polyester chain mobility increases. The chain mobility increases drastically when the temperature exceeds the glass transition temperature, Tg , which is ∼40°C at the surface layer of PET. Since PET crystallization starts at 70°C, the ideal temperature for enzymatic degradation is just below 70°C to balance high chain mobility and enzymatic reaction activation without inducing crystal formation. This paper reviews the current understanding on the properties of PET as an enzyme substrate and summarizes the most recent knowledge of how the crystalline and amorphous regions of PET form, and how the XC and the Tg impact the efficiency of enzymatic PET degradation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app