Add like
Add dislike
Add to saved papers

Simple quantitative planimetric measurement of nigrosome-1 for clinical settings.

INTRODUCTION: Loss of MRI hyperintense signal in nigrosome-1 (assessed with susceptibility-weighted imaging) is a biomarker for Parkinson's disease (PD). Current clinical practice involves subjectively rating the appearance of nigrosome-1 which is challenging. The study aimed to test and compare a simple method for quantifying nigrosome-1 with the current subjective rating method.

METHODS: Two experienced neuroradiologists measured area of hyperintense signal in nigrosome-1 (quantitative method) and rated nigrosome-1 appearance (as normal, attenuated, or absent; subjective method) in 42 patients encompassing the full spectrum of nigrosome-1 integrity (21 patients aged 55.5 ± 20.9 years with Essential tremor (ET) and a subset of 21 patients aged 69.6 ± 8.6 years with PD). Neuroradiologists were blinded to each other's measurements, clinical notes, and patient group.

RESULTS: Both methods yielded a significant difference between the groups (PD vs ET; p < 0.001). Pooled (across sides) area of nigrosome-1 hyperintense signal was significantly smaller in the PD group (median = 2.1 mm2 , range = 0-15.8 mm2 ) than ET group (median = 8.3 mm2 , range = 0-15.7 mm2 ; p < 0.001). Inter-rater reliability was high to very high for both methods (subjective: weighted kappa = 0.640, p < 0.001; quantitative: W = 0.733, p = 0.004). Our primary hypothesis that area of nigrosome-1 hyperintense signal exhibits higher inter-rater reliability than subjective rating of nigrosome-1 appearance was not supported.

CONCLUSION: The simple quantitative method, used with subjectively rated nigrosome-1 appearance, may improve confidence in longitudinal clinical reporting, when nigrosome-1 is attenuated. However, further work on the incremental diagnostic value of planimetry and bias, repeatability and reproducibility are needed before it can be recommended in clinical practice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app