Add like
Add dislike
Add to saved papers

Investigating pulse-echo sound speed estimation in breast ultrasound with deep learning.

Ultrasonics 2023 October 30
Ultrasound is an adjunct tool to mammography that can quickly and safely aid physicians in diagnosing breast abnormalities. Clinical ultrasound often assumes a constant sound speed to form diagnostic B-mode images. However, the components of breast tissue, such as glandular tissue, fat, and lesions, differ in sound speed. Given a constant sound speed assumption, these differences can degrade the quality of reconstructed images via phase aberration. Sound speed images can be a powerful tool for improving image quality and identifying diseases if properly estimated. To this end, we propose a supervised deep-learning approach for sound speed estimation from analytic ultrasound signals. We develop a large-scale simulated ultrasound dataset that generates representative breast tissue samples by modeling breast gland, skin, and lesions with varying echogenicity and sound speed. We adopt a fully convolutional neural network architecture trained on a simulated dataset to produce an estimated sound speed map. The simulated tissue is interrogated with a plane wave transmit sequence, and the complex-value reconstructed images are used as input for the convolutional network. The network is trained on the sound speed distribution map of the simulated data, and the trained model can estimate sound speed given reconstructed pulse-echo signals. We further incorporate thermal noise augmentation during training to enhance model robustness to artifacts found in real ultrasound data. To highlight the ability of our model to provide accurate sound speed estimations, we evaluate it on simulated, phantom, and in-vivo breast ultrasound data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app