Add like
Add dislike
Add to saved papers

Trypanosoma cruzi infection in dogs along the US-Mexico border: R 0 changes with vector species composition.

Epidemics 2023 October 30
Infection with Trypanosoma cruzi, etiological agent of Chagas disease, is common in US government working dogs along the US-Mexico border. This 3145 km long border comprises four states: Texas (TX), New Mexico (NM), Arizona (AZ) and California (CA) with diverse ecosystems and several triatomine (a.k.a., kissing bug) species, primary vectors of T. cruzi in this region. The kissing bug (Heteroptera: Reduviidae) community ranging from CA to TX includes Triatoma protracta (Uhler), Triatoma recurva (Stål) and Triatoma rubida (Uhler) and becomes dominated by Triatoma gerstaeckeri Stål in TX. Here, we ask if T. cruzi infection dynamics in dogs varies along this border region, potentially reflecting changes in vector species and their vectorial capacity. Using reversible catalytic models of infection, where seropositivity can be lost, we estimated an R0 (Estimate ± S.E.) of 1.192 ± 0.084 for TX and NM. In contrast, seropositivity decayed to zero as dogs aged in AZ and CA. These results suggest that dogs are likely infected by T. cruzi during their training in western TX, with a force of infection large enough for keeping R0 above 1, i.e., the disease endemically established, in TX and NM. In AZ and CA, a lower force of infection, probably associated with different vector species communities and associated vectorial capacity and/or different lineages of T. cruzi, results in dogs decreasing their seropositivity with age.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app