Add like
Add dislike
Add to saved papers

UCHL1 maintains microenvironmental homeostasis in goat germline stem cells.

Spermatogonial stem cells (SSCs) play a crucial role in mammalian spermatogenesis and maintain the stable inheritance of the germline in livestock. However, stress and bacterial or viral infections can disrupt immune homeostasis of the testes, thereby leading to spermatogenesis destruction and infertility, which severely affects the health and productivity of mammals. This study aimed to explore the effect of ubiquitin C-terminal hydrolase L1 (UCHL1) knockdown (KD) in goat SSCs and mouse testes and investigate the potential anti-inflammatory function of UCHL1 in a poly(I:C)-induced inflammation model to maintain microenvironmental homeostasis. In vitro, the downregulation of UCHL1 (UCHL1 KD) in goat SSCs increased the expression levels of apoptosis and inflammatory factors and inhibited the self-renewal and proliferation of SSCs. In vivo, the structure of seminiferous tubules and spermatogenic cells was disrupted after UCHL1 KD, and the expression levels of apoptosis- and inflammation-related proteins were significantly upregulated. Furthermore, UCHL1 inhibited the TLR3/TBK1/IRF3 pathway to resist poly(I:C)-induced inflammation in SSCs by antagonizing HSPA8 and thus maintaining SSC autoimmune homeostasis. Most importantly, the results of this study showed that UCHL1 maintained immune homeostasis of SSCs and spermatogenesis. UCHL1 KD not only inhibited the self-renewal and proliferation of goat SSCs and spermatogenesis but was also involved in the inflammatory response of goat SSCs. Additionally, UCHL1 has an antiviral function in SSCs by antagonizing HSPA8, which provides an important basis for exploring the specific mechanisms of UCHL1 in goat spermatogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app