Add like
Add dislike
Add to saved papers

Upregulating miR-181b promotes ferroptosis in osteoarthritic chondrocytes by inhibiting SLC7A11.

BACKGROUND: Osteoarthritis (OA) is a common disease with a complex pathology. This study aimed to investigate the correlation between the aberrant upregulation of miR-181b and ferroptosis in chondrocytes during the progression of OA.

METHODS: An OA cell model was constructed with erastin. Ferrostatin-1 (Fer), bioinformatics, and dual-luciferase activity reports were used to investigate the effect of miR-181b on OA. Finally, a rat model of OA was induced by monosodium iodoacetate to verify that miR-181b inhibits SLC7A11 gene expression and increases ferroptosis.

RESULTS: The results showed that Fer could effectively reverse the erastin-induced inhibition of human chondrocyte viability, increase the level of collagenous proteins in human chondrocytes, and inhibit oxidative stress and ferroptosis. MiR-181b is abnormally elevated in OA cell models. Transfection of a miR-181b inhibitor could increase the expression levels of the ferroptosis-related proteins solute carrier family 7 members 11 (SLC7A11) and glutathione peroxidase 4 (GPX4), thereby inhibiting the occurrence of ferroptosis in chondrocytes. In addition, hsa-miR-181b-5p and SLC7A11 have a targeted regulatory effect. Transfection of SLC7A11 siRNA effectively abrogated the increase in chondrocyte viability induced by the miR-181 inhibitor and increased ferroptosis. Finally, miR-181b was shown to exacerbate OA disease progression by inhibiting SLC7A11 gene expression and increasing ferroptosis in a rat OA model.

CONCLUSIONS: Elevating miR-181b may mediate chondrocyte ferroptosis by targeting SLC7A11 in OA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app