Add like
Add dislike
Add to saved papers

Methylene blue as an adjuvant during cardiopulmonary resuscitation: an experimental study in rats.

INTRODUCTION: Methylene Blue (MB) has been shown to attenuate oxidative, inflammatory, myocardial, and neurological lesions during ischemia-reperfusion and has great potential during cardiac arrest. This study aimed to determine the effects of MB combined with epinephrine during cardiac arrest on myocardial and cerebral lesions.

METHOD: Thirty-eight male Wistar rats were randomly assigned to four groups: the sham group (SH, n = 5), and three groups subjected to cardiac arrest (n = 11/group) and treated with EPI 20 µg.kg-1 (EPI), EPI 20 µg.kg-1  + MB 2 mg.kg-1 (EPI + MB), or saline 0.9% 0.2 ml (CTL). Ventricular fibrillation was induced by direct electrical stimulation in the right ventricle for 3 minutes, and anoxia was maintained for 5 minutes. Cardiopulmonary Resuscitation (CPR) consisted of medications, ventilation, chest compressions, and defibrillation. After returning to spontaneous circulation, animals were observed for four hours. Blood gas, troponin, oxidative stress, histology, and TUNEL staining measurements were analyzed. Groups were compared using generalized estimating equations.

RESULTS: No differences in the Returning of Spontaneous Circulation (ROSC) rate were observed among the groups (EPI: 63%, EPI + MB: 45%, CTL: 40%, p = 0.672). The mean arterial pressure immediately after ROSC was higher in the EPI+MB group than in the CTRL group (CTL: 30.5 [5.8], EPI: 63 [25.5], EPI+MB: 123 [31] mmHg, p = 0.007). Serum troponin levels were high in the CTL group (CTL: 130.1 [333.8], EPI: 3.70 [36.0], EPI + MB: 43.7 [116.31] ng/mL, p < 0.05).

CONCLUSION: The coadministration of MB and epinephrine failed to yield enhancements in cardiac or brain lesions in a rodent model of cardiac arrest.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app