Add like
Add dislike
Add to saved papers

Detection of multidrug-resistant Campylobacter species from food-producing animals and humans in Nigeria: Public health implications and one health control measures.

Antimicrobial-resistant thermophilic Campylobacter species (TCS) pose tremendous public health problems because they are zoonotic, difficult to treat and usually harboured by food-producing animals (FPAs). This study ascertained the phenotypic antimicrobial resistance (AMR) in 56 phenotypically identified TCS from slaughtered cattle, poultry, and humans in Enugu State, Nigeria. The presence of selected AMR and virulence genes harboured by the animal and human isolates were also detected and compared in 36 PCR-confirmed Campylobacter species. All the 56 TCS were multidrug-resistant as none were susceptible to ampicillin, penicillin-G, amoxicillin-clavulanic acid, cephalothin and metronidazole. The isolates were 92.9 %, 62.5 %, 92.9 %, 42.9 %, 26.8 %, 25 %, 28.6 %, 53.7 %, 30.1 %, 32.1 % and 55.4 % resistant to ceftriaxone, nalidixic acid, cefotaxime, enrofloxacin, ciprofloxacin, streptomycin, gentamycin, erythromycin, azithromycin, chloramphenicol and tetracycline, respectively. The top four most effective classes of antimicrobials were aminoglycosides > macrolides > amphenicol > fluoroquinolones. The AMR genes detected and the percentage of the isolates that harboured them were: aadE-1 (33.3 %), aphA-3-1 (36.1 %), tetO (44.4%), Blaoxa-61 (61.1 %) and the multidrug efflux pump, cmeB (86.1%). Virulence genes detected and the corresponding percentage of TCS that harboured them were: cdtB (61.1 %), flaA (47.2 %), ciaB (38.9 %), and pldA (38.9 %). The cmeB was significantly detected in animal isolates (p = 0.018, OR = 5.1, CI = 0.7-6.6) while BlaOXA-61 predominated in human isolates (p = 0.019, OR = 6.2). Likewise, ciaB virulence gene was mostly detected (p = 0.019, OR = 6.4, CI = 1.3-25) in animal isolates. The findings underscore the roles of FPAs in the zoonotic dissemination of Campylobacter-associated AMR and virulence genes in the study area. This warrants the adoption of One Health control strategies to limit spread of the multidrug-resistant zoonotic Campylobacter species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app