Add like
Add dislike
Add to saved papers

Evaluation of cyto-genotoxicity biomarkers, changes in histology and antioxidant defense system of Oreochromis niloticus induced by the industrial effluents.

Aquatic pollution mainly by industrial effluents has been a major concern since a few decades. The current study evaluated cyto-genotoxicity of industrial effluents on Oreochromis niloticus exposed to sublethal levels by hematotoxicity, blood biochemistry analysis, micronucleus assay, antioxidants and cerebral toxicity. The significant elevation in differential leukocytes of exposed fish was indicative of infections and compromised immune system. The acute and chronic industrial effluent exposure caused significant decline in aspartame transaminase (AST) and alanine transaminase (ALT) and renal function enzymes. Necrosis, hyperplastic growth, hypertrophy and toxicant accumulation exhibited cerebral toxicity potential of industrial toxicants. A significant decrease in antioxidants, GSH, SOD and catalase (0.14, 0.66 and 1549 unit/mg protein) in chronic exposure group in comparison to 0.18, 2.83, 7680 and 6200.8 values of GSH, SOD, GPx and CAT, respectively. Results showed that acute and chronic industrial effluent exposure caused genotoxicity with higher frequencies of formation of micronuclei and cytokaryotic fusion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app