Add like
Add dislike
Add to saved papers

Study on reproductive endocrine disturbance and DNA damage mechanism of female Ruditapes philippinarum under Benzo[a]pyrene stress.

Environmental Pollution 2023 October 32
The reproductive toxicity of polycyclic aromatic hydrocarbons (PAHs) in aquatic organisms has attracted increasing attention from scholars. Currently, research in this field primarily focuses on vertebrates such as zebrafish and other model species. However, there is still a significant knowledge gap in the toxicity of PAHs to invertebrates and its potential mechanisms. Benzo[a]pyrene (B[a]P) is one of the most representative PAHs. In this study, female Ruditapes philippinarum (R. philippinarum) was treated with B[a]P concentrations of 0, 0.8, 4, and 20 μg/L to investigate reproductive indicators in the proliferative, growth, mature, and spawn stages. Transcriptomics was used to investigate the expression of genes associated with the reproductive endocrine system, DNA repair, autophagy, apoptosis, and ovarian development at different reproductive stages. Our results suggested that B[a]P disrupted the endocrine system by interfering with the production of steroid hormones and the transmission of estrogen signals in female R. philippinarum. The structure of the ovarian DNA duplex is severely damaged under the stress of B[a]P, and a series of cellular responses caused by DNA damage are also interfered. Additionally, we observed a reduction in the gonadosomatic index (GSI) and mature oocytes numbers after B[a]P exposed. Tissue section indicated that severe damage to the ovarian structure at mature and spawn stages. In conclusion, this study combined transcriptomic and toxicological to explore the negative effects on ovarian development induced by B[a]P, focusing on reproductive endocrine disturbance and DNA damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app