Add like
Add dislike
Add to saved papers

Tumor-Promoting Effects of Microrna-421/4-Aminobutyrate Aminotransferase Axis in Hepatocellular Carcinoma.

Background: MicroRNA-421 (miR-421) has been implicated in hepatocellular carcinoma (HCC), but its potential mechanism in HCC remains unclear. Objectives: The study aimed to study the potential mechanism of miR-421 in HCC which is necessary. Methods: The downstream target genes of miR-421 were screened in HCC tissues and cells using miDIP, Targetscan, and starBase databases. Differential analysis, survival analysis, and Pearson correlation analysis were performed between miR-421 and its downstream target genes. Quantitative reverse transcription polymerase chain reaction and western blot were used to assay RNA and protein levels of 4-aminobutyrate aminotransferase (ABAT) and epithelial-mesenchymal transition (EMT)-related proteins. Cell-based assays, including CCK-8, wound healing, transwell, flow cytometry, and metabolic measurements, were implemented to assess proliferation, migration, invasion, cell cycle, and apoptosis of HCC cells with different treatments. Dual-luciferase assay was utilized to detect the targeting relationship between miR-421 and ABAT. Results: miR-421 level was elevated in HCC tissues and cells, and low miR-421 expression hindered phenotype progression of HCC cells. ABAT was identified as a direct target of miR-421 in HCC cells, and miR-421 could inhibit ABAT expression. Rescue assay revealed that miR-421 promoted HCC cell tumorigenesis progress and affected cell metabolic remodeling through down-regulating ABAT. Conclusion: The miR-421/ABAT regulatory axis promoted HCC cell tumorigenesis progress, highlighting its potential as a therapeutic target for HCC. (REV INVEST CLIN. 2023;75(5):233-48).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app