Add like
Add dislike
Add to saved papers

Epigenetic mutagen-like environmental chemicals alter neural differentiation of human induced pluripotent stem cells.

Various chemicals, including pesticides, heavy metals, and metabolites of tobacco, have been detected in fetal environment. Fetuses are exposed to these chemicals at relatively low concentrations; however, their risk of developing neurological and behavioral disorders increases after birth. We aimed to evaluate the effects of five chemicals (diethylphosphate, cotinine, octachlorodipropyl ether, mercury, and selenium) detected in the serum of pregnant mothers on neural development using human neurospheres (NSphs) differentiated from induced pluripotent stem cells. Exposure to each chemical at serum concentrations revealed no effects on NSph development. However, combined exposure to the five chemicals caused a significant decrease in NSph size and altered gene expression and neural differentiation. Thus, we next focused on DNA methylation to investigate changes in NSph properties caused by chemical exposure. Combined exposure to chemicals had extremely small effects on the DNA methylation status of NSphs at individual gene loci. However, stochastic changes in methylation status caused by chemical exposure were significantly accumulated throughout the entire genome. These results suggest that the five chemicals acted as epimutagens that alter the epigenetic status during human neural development at the biological level. Taken together, we showed for the first time, the epimutagen-induced alterations in neural differentiation at serum concentrations using an in vitro human neuronal model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app