Add like
Add dislike
Add to saved papers

Cullin-3 intervenes in muscle atrophy in the elderly by mediating the degradation of nAchRs ubiquitination.

Experimental Gerontology 2023 October 31
Sarcopenia involves in the loss of muscle mass associated with aging, which is the major cause of progressive muscle weakness and deterioration in older adults. Muscle atrophy is a direct presentation of sarcopenia, and it greatly contributes to the decline in quality of life among older adults. Neuromuscular junction (NMJ) stability is the key link to maintain muscle function. Besides, the degenerative change of NMJ promotes the process of muscle atrophy in the elderly. Based on previous transcriptome sequencing and bioinformatics analyses of aged muscle, this study used the 18-month-old aged mouse model and the 6-month-old young mouse model to deliberate the role and underlying mechanisms of Cullin-3 (Cul3) in age-related muscle atrophy. The results of reverse transcriptase polymerase chain reaction (RT-PCR) and immunoblotting analysis showed that the expression of CUL3 increased in aged muscle tissue, while the expression level of postsynaptic membrane nicotinic acetylcholine receptors (nAChRs) decreased significantly, which manfested a negative correlation. Meanwhile, immunofluorescence demonstrated that Cul3 was highly expressed in senile muscle NMJ. The results of ubiquitin indicated that the ubiquitin level of aged muscle nAChRs was evidently increased. Co-immunoprecipitation furtherly verified the correlation between Cul3 and nAChRs. Taken together, Cul3 may mediate the ubiquitination degradation of nAChRs protein at the NMJ site in aged mice, leading to NMJ degeneration and accelerated atrophy of fast-twitch muscle fibers in aged muscle. As a prominent element to maintain the stability of NMJ, Cul3 is supposed to be one of candidate intervention targets in sarcopenia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app