Journal Article
Review
Systematic Review
Add like
Add dislike
Add to saved papers

Mechanical and chemical characterization of contemporary occlusal splint materials fabricated with different methods: a systematic review.

OBJECTIVE: To systematically review studies on various occlusal splint materials and describe their mechanical and chemical properties.

METHODS: MEDLINE (PubMed), Scopus, and Web of Science searches were conducted for in vitro studies focusing on occlusal splint materials. Two reviewers performed an assessment of the identified studies and data abstraction independently, and this was complimented by an additional hand search. The articles were limited to those in the English language that were published between January 1st , 2012, and December 1st , 2022.

RESULTS: The initial search yielded 405 search results of which 274 were selected for full-text review following abstract evaluation. 250 articles that did not meet the inclusion criteria were excluded, and the remaining 25 articles (with 1 article identified from the reference lists of included articles) providing mechanical and chemical values were used in this review. Poly methyl methacrylate (PMMA) -based occlusal splint materials showed the highest values in terms of hardness, wear resistance, flexural strength, flexural modulus, e-modulus, and fracture toughness. The material group with the highest water sorption and water solubility was 3D printed (PR) splint materials. In addition, the lowest degree of double bond conversion was also observed in this group of materials.

CONCLUSIONS: The outcome of this review suggests that mechanically and chemically acceptable properties can be attained with PMMA-based occlusal splint materials using both conventional and digital production methods. PR splint materials should not be considered as the primary choice for long-term treatments due to their low mechanical and chemical properties.

CLINICAL RELEVANCE: This review provides clinical recommendations for selecting the appropriate material and fabrication method for occlusal splints while taking the patients' needs and the materials´ mechanical and chemical properties into account.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app