Add like
Add dislike
Add to saved papers

Controlling Thin Film Morphology Formation during Gas Quenching of Slot-Die Coated Perovskite Solar Modules.

Transferring record power conversion efficiency (PCE) >25% of spin coated perovskite solar cells (PSCs) from the laboratory scale to large-area photovoltaic modules requires significant advances in scalable fabrication techniques. In this work, we demonstrate the fundamental interrelation between drying dynamics of slot-die coated precursor solution thin films and the quality of resulting slot-die coated gas-quenched polycrystalline perovskite thin films. Well-defined drying conditions are established using a temperature-stabilized, movable table and a flow-controlled, oblique impinging slot nozzle purged with nitrogen. The accurately deposited solution thin film on the substrate is recorded by a tilted CCD camera, allowing for in situ monitoring of the perovskite thin film formation. With the tracking of crystallization dynamics during the drying process, we identify the critical process parameters needed for the design of optimal drying and gas quenching systems. In addition, defining different drying regimes, we derive practical slot jet adjustments preventing gas backflow and demonstrate large-area, homogeneous, and pinhole-free slot-die coated perovskite thin films that result in solar cells with PCEs of up to 18.6%. Our study reveals key interrelations of process parameters, e.g., the gas flow and drying velocity, and the exact crystallization position with the morphology formation of fabricated thin films, resulting in a homogeneous performance of corresponding 50 × 50 mm2 solar minimodules (17.2%) with only minimal upscaling loss. In addition, we validate a previously developed model on the drying dynamics of perovskite thin films on small-area slot-die coated areas of ≥100 cm2 . The study provides methodical guidelines for the design of future slot-die coating setups and establishes a step forward to a successful transfer of solution processes towards industrial-scale deposition systems beyond brute force optimization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app