Add like
Add dislike
Add to saved papers

Speed-specific optimal contractile conditions of the human soleus muscle from slow to maximum running speed.

The soleus is the main muscle for propulsion during human running but its operating behavior across the spectrum of physiological running speeds is currently unknown. This study investigated experimentally the soleus muscle activation patterns and contractile conditions for force generation, power production and efficient work production (i.e. force-length potential, force-velocity potential, power-velocity potential and enthalpy efficiency) at seven running speeds (3.0 m s-1 to individual maximum). During submaximal running (3.0 to 6.0 m s-1), the soleus fascicles shortened close to optimal length and at a velocity close to the efficiency-maximum, two contractile conditions for economical work production. At higher running speeds (7.0 m s-1 to maximum), the soleus muscle fascicles still operated near optimum length, yet the fascicle shortening velocity increased and shifted towards the optimum for mechanical power production with a simultaneous increase in muscle activation, providing evidence for three cumulative mechanisms to enhance mechanical power production. Using the experimentally-determined force-length-velocity potentials and muscle activation as inputs in a Hill-type muscle model, a reduction in maximum soleus muscle force at speeds ≥7.0 m s-1 and a continuous increase in maximum mechanical power with speed was predicted. The reduction in soleus maximum force was associated with a reduced force-velocity potential. The increase in maximum power was explained by an enhancement of muscle activation and contractile conditions until 7.0 m s-1, yet at the maximal running speed mainly by increased muscle activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app