Add like
Add dislike
Add to saved papers

The Origin of Discrepancies between Predictions and Annotations in Intrinsically Disordered Proteins.

Biomolecules 2023 September 26
Disorder prediction methods that can discriminate between ordered and disordered regions have contributed fundamentally to our understanding of the properties and prevalence of intrinsically disordered proteins (IDPs) in proteomes as well as their functional roles. However, a recent large-scale assessment of the performance of these methods indicated that there is still room for further improvements, necessitating novel approaches to understand the strengths and weaknesses of individual methods. In this study, we compared two methods, IUPred and disorder prediction, based on the pLDDT scores derived from AlphaFold2 (AF2) models. We evaluated these methods using a dataset from the DisProt database, consisting of experimentally characterized disordered regions and subsets associated with diverse experimental methods and functions. IUPred and AF2 provided consistent predictions in 79% of cases for long disordered regions; however, for 15% of these cases, they both suggested order in disagreement with annotations. These discrepancies arose primarily due to weak experimental support, the presence of intermediate states, or context-dependent behavior, such as binding-induced transitions. Furthermore, AF2 tended to predict helical regions with high pLDDT scores within disordered segments, while IUPred had limitations in identifying linker regions. These results provide valuable insights into the inherent limitations and potential biases of disorder prediction methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app