Add like
Add dislike
Add to saved papers

Input-output relation of midbrain connectomics in a rodent model of depression.

BACKGROUND: The symptoms associated with depression are believed to arise from disruptions in information processing across brain networks. The ventral tegmental area (VTA) influences reward-based behavior, motivation, addiction, and psychiatric disorders, including depression. Deep brain stimulation (DBS) of the medial forebrain bundle (MFB), is an emerging therapy for treatment-resistant depression. Understanding the depression associated anatomical networks crucial for comprehending its antidepressant effects.

METHODS: Flinders Sensitive Line (FSL), a rodent model of depression and Sprague-Dawley rats (n = 10 each) were used in this study. We used monosynaptic tracing to map inputs of VTA efferent neurons: VTA-to-NAc nucleus accumbens (NAc) (both core and shell) and VTA-to-prefrontal cortex (PFC). Quantitative analysis explored afferent diversity and strengths.

RESULTS: VTA efferent neurons receive a variety of afferents with varying input weights and predominant neuromodulatory representation. Notably, NAc-core projecting VTA neurons showed stronger afferents from dorsal raphe, while NAc shell-projecting VTA neurons displayed lower input strengths from cortex, thalamus, zona incerta and pretectal area in FSL rats. NAc shell-projecting VTA neurons showed the most difference in connectivity across the experimental groups.

LIMITATIONS: Lack of functional properties of the anatomical connections is the major limitation of this study. Incomplete labeling and the cytotoxicity of the rabies virus should be made aware of.

CONCLUSIONS: These findings provide the first characterization of inputs to different VTA ascending projection neurons, shedding light on critical differences in the connectome of the midbrain-forebrain system. Moreover, these differences support potential network effects of these circuits in the context of MFB DBS neuromodulation for depression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app