Add like
Add dislike
Add to saved papers

Ru Cluster Incorporated NiMoO(P) 4 Nanosheet Arrays as High-Efficient Bifunctional Catalyst for Wind/Solar-To-Hydrogen Generation Systems.

Developing cost-efficient bifunctional water splitting catalysts is crucial for sustainable hydrogen energy applications. Herein, ruthenium (Ru)-incorporated and phosphorus (P)-doped nickel molybdate (Ru-NiMoO(P)4 ) nanosheet array catalysts are synthesized. Due to the synergy of Ru clusters and NiMoO(P)4 by the modulated electronic structure and the rich active sites, impressively, Ru-NiMoO(P)4 exhibits superior OER (194 mV @ 50 mA cm-2 ) and HER (24 mV @ 10 mA cm-2 ) activity in alkaline media, far exceeding that of commercial Pt/C and RuO2 catalysts. Meanwhile, as bifunctional catalyst, to drive the overall water splitting at the current density of 10 mA cm-2 , Ru-NiMoO(P)4 requires only 1.45 V and maintaining stable output for 100 h. Furthermore, Ru-NiMoO(P)4 also possesses excellent capability for seawater electrolysis hydrogen production. Moreover, the successful demonstration of wind and solar hydrogen production systems provide the feasibility of the ultra-low Ru loading catalyst for large-scale hydrogen production in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app