Add like
Add dislike
Add to saved papers

Metabolomes of bumble bees reared in common garden conditions suggest constitutive differences in energy and toxin metabolism across populations.

Cold tolerance of ectotherms can vary strikingly among species and populations. Variation in cold tolerance can reflect differences in genomes and transcriptomes that confer cellular-level protection from cold; additionally, shifts in protein function and abundance can be altered by other cellular constituents as cold-exposed insects often have shifts in their metabolomes. Even without a cold challenge, insects from different populations may vary in cellular composition that could alter cold tolerance, but investigations of constitutive differences in metabolomes across wild populations remain rare. To address this gap, we reared Bombus vosnesenskii queens collected from Oregon and California (USA) that differ in cold tolerance (CTmin = -6 °C and 0 °C, respectively) in common garden conditions, and measured offspring metabolomes using untargeted LC-MS/MS. Oregon bees had higher levels of metabolites associated with carbohydrate (sorbitol, lactitol, maltitol, and sorbitol-6-phosphate) and amino acid (hydroxyproline, ornithine, and histamine) metabolism. Exogenous metabolites, likely derived from the diet, also varied between Oregon and California bees, suggesting population-level differences in toxin metabolism. Overall, our results reveal constitutive differences in metabolomes for bumble bees reared in common garden conditions from queens collected in different locations despite no previous cold exposure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app