Add like
Add dislike
Add to saved papers

Morusinol Extracted from Morus alba Inhibits Cell Proliferation and Induces Autophagy via FOXO3a Nuclear Accumulation-Mediated Cholesterol Biosynthesis Obstruction in Colorectal Cancer.

The incidence rate of colorectal cancer (CRC) has been increasing significantly in recent years, and it is urgent to develop novel drugs that have more effects for its treatment. It has been reported that many molecules extracted from the root bark of Morus alba L. (also known as Cortex Mori) have antitumor activities. In our study, we identified morusinol as a promising anticancer agent by selecting from 30 molecules extracted from Morus alba L. We found that morusinol treatment suppressed cell proliferation and promoted apoptosis of CRC cells in vitro . Besides this, we observed that morusinol induced cytoprotective autophagy. The GO analysis of differentially expressed genes from RNA-seq data showed that morusinol affected cholesterol metabolism. Then we found that key enzyme genes in the cholesterol biosynthesis pathway as well as the sterol regulatory element binding transcription factor 2 (SREBF2) were significantly downregulated. Furthermore, additional cholesterol treatment reversed the anti-CRC effect of morusinol. Interestingly, we also found that morusinol treatment could promote forkhead box O3 (FOXO3a) nuclear accumulation, which subsequently suppressed SREBF2 transcription. Then SREBF2-controlled cholesterol biosynthesis was blocked, resulting in the suppression of cell proliferation, promotion of apoptosis, and production of autophagy. The experiments in animal models also showed that morusinol significantly impeded tumor growth in mice models. Our results suggested that morusinol may be used as a candidate anticancer drug for the treatment of CRC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app